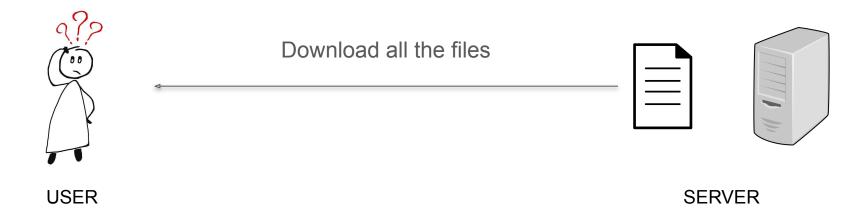
PIR: Private Information Retrieval

Andrea Guerra


Università di Pisa

Private Information Retrieval

PIR allows a user to retrieve a file from a public database without revealing the file to the server

Trivial PIR

High network costs :(

Private Information Retrieval: Types

- Information-theoretic PIR (IT-PIR)
 - o Requires multiple servers and non-collusion assumptions

- Computational PIR (cPIR)
 - Expensive and requires cryptographic assumptions

Applications

Patent search

Private ad network

Private movie streaming

. . .

Outline

Homomorphic Encryption

Basic PIR construction

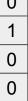
XPIR

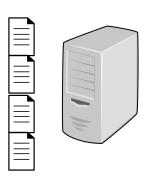
SealPIR

Evaluation

Homomorphic Encryption

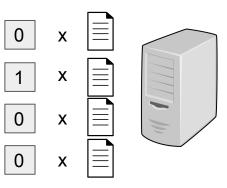
```
KeyGen() = (pk, sk)
Enc(m, pk) = c
Dec(c, sk) = m
```


Homomorphic Properties:


```
Enc(m_1) \oplus Enc(m_2) = Enc(m_1 + m_2)
e \otimes Enc(m) = Enc(e \times m)
Enc(m_1) \otimes Enc(m_2) = Enc(m_1 \times m_2)
```

A PIR Protocol

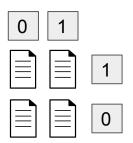
The client wants the file 2



Client encryption is additively homomorphic

A PIR Protocol

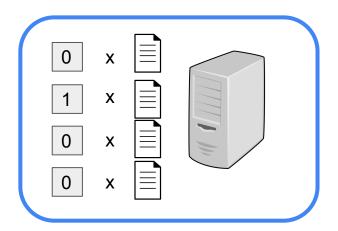
The client wants the file 2



Client encryption is additively homomorphic

A PIR Protocol

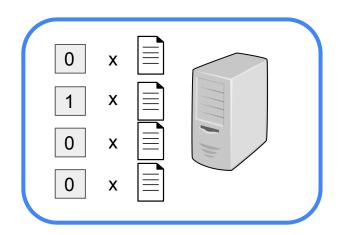
The client wants the file 2


Communication complexity: $O(\sqrt{n})$

Problems

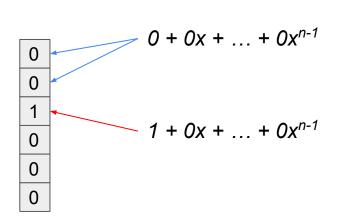
Problem: Query is very large

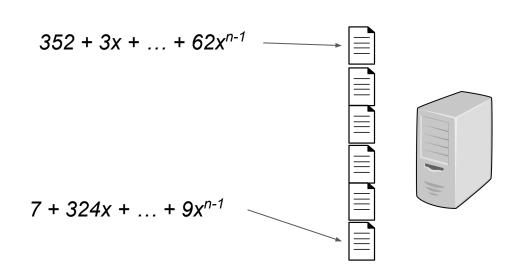
Problem: Computation is expensive



Problems

Problem: Query is very large

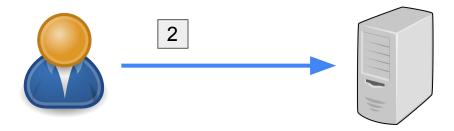



Problem: Computation is expensive

XPIR
Lattice crypto + preprocessing
DB

XPIR

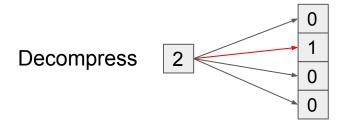
Preprocessing speed: 5 Gbit/s


SealPIR

- Compressing Query
 - from a query vector to a single query ciphertext

- Probabilistic Batch Codes
 - o processing a batch of queries from the same client to reduce the computational cost

Compressing Query


The client wants the file 2

Compressing Query

The client wants the file 2

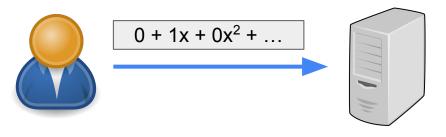
The server does not learn the index

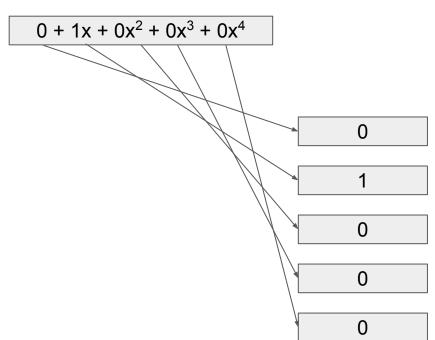
Fully Homomorphic Encryption

3	× 2 = 6	Multiplication of ciphertexts	1.77 ms
3	× 0 = 0	Multiplication of a ciphertext by a plaintext	0.14 ms
2	+ 3 = 5	Addition of ciphertexts	0.002 ms

With \times and + we can compute arbitrary functions (Decompression)

Substitution operation


2 + 3 = 5 Addition of ciphertexts 0.002 ms
3 × 0 = 0 Multiplication of a ciphertext by a plaintext 0.14 ms


$$x^3 + 5(x^3)^2 = \text{Sub} (x + 5x^2 + 3)$$

Order of magnitude cheaper than multiplying ciphertexts

Decompression

The client wants the file 2

XPIR vs SealPIR

Costs of PIR on a database with 1 million entries (288-byte each)

	XPIR	SealPIR	Improvement
Query size	17 MB	64 KB	274x
Query generation	55 ms	3.3 ms	17x
Server processing	2.1 sec	2.24 sec	6% overhead

Conclusion

- PIR and its main application
 - Patent search
 - Homomorphic Encryption
 - Additively
 - Fully
 - PIR constructions
 - Trivial PIR and basic PIR protocol
 - XPIR
 - SealPIR
 - Problems
 - communication complexity
 - computation complexity

Thank you for your attention!